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New Anisoparametric 3-Node Elements for Out-of-Plane
Deformable Curved Beam
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Based on numerical reduced minimization theory, new anisoparametric 3-node elements for
out-of-plane curved beam are developed. The elements are designed to be free from spurious
constraints. In this paper, the effect of the Jacobian upon numerical solution is analyzed and
predicted through reduced minimization analysis of anisoparametric 3-node elements with
different Jacobian assumption. The prediction is verified by numerical tests for circular and
spiral out-of-plane deformable curved beam models. This paper proposes two kinds of 3-node
elements with 7-DOF; one element employs 2-point integration for all strains, and the other
element uses 3-point integration with a constant Jacobian within element for calculation of
shear strain.
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1. Introduction

Many investigators have studied curved beam
finite elements to improve the convergence and
accuracy for last thirty years. Looking into their
studies, the main cause of error when using
CO-continuous elements in finite element analy­
sis, is known as a stiffness locking phenomenon.
The locking phenomenon is characterized by two
typical numerical behaviors in a static analysis;
one is a much smaller displacement than the exact
one, and the other is the violent undulate stress
distributions. As a result of these intensive
studies, they have revealed that an inconsistent
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assumption on displacement functions produces
spurious constraints when full integration is em­
ployed. Many remedies of the stiffness locking
have been studied. The uniformlyjselectively
reduced integration proposed by Zienkiewicz
(1989) has been used for the representative rem­
edies for locking. Tessler (1986, 1988) has devel­
oped an anisoparametric element that has differ­
ent numbers of nodes depending on strain compo­
nent. Prathap and Babu (1986) explained how
the full integration for shear and extensional
strain energy leads to locking, and removed the
cause by using the modified shape functions in
order not to yield any spurious constraints.
Kamoulakos (1988) explained how reduced inte­
gration yields improved results by illustrating a
simple example. Min and Kim (1993, 1994, 1995,
1996) have explained the role of a reduced inte­
gration from the viewpoint of minimization. They
have clarified the relationship amongst spurious
constraints, optimal points, and integration order
by using the reduced minimization theory.
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The angles of twisting and bending rotations
(Bt and Bn ) are interpolated by a new set of shape
functions NOi

3

et = l:. NOiBt,
i=1,i*2

3

8n = l:. u,»; (4)
i=1.i*2

I
NW3=2~(~+ I) (2)

In Eq. (2), ~ (E [-I, + I]) is one-dimensional
natural coordinate as shown in Fig. 1(b).
In Fig. I (a), s is the curvilinear coordinate run­
ning along the neutral axis of a curved beam and
t-n-b is the trihedron of the curved beam at a
point on s, where t is unit tangent vector, n is
unit principal normal vector and b is unit binor­
mal vector (1983, Kreyszig).

The binormal deflection (w) is interpolated by
the same shape functions N wi'

(3)
3

w=l:.NwiWi
i=l

Recently, Sengupta and Oasgupta (1997) have
used '! five-node thirteen OaF anisoparametric
element using different degrees of polynomials for
interpolating deflection and rotations, and have
shown coincidence of numerical solutions and
exact ones for various models including a curved
beam with a spiral geometry. However, they have
not mentioned why their element has a locking­
free property.

In this paper, we present new 3-node anisopar­
ametric elements which have similar formulation
procedure as Sengupta's 5-noded element and we
show why the new elements have locking-free
property by deriving the new elements based on
reduced minimization theory. Additional1y,
because the elements are defined by using global
Cartesian coordinates, their Jacobian cannot be
constant. This can be a cause of locking (Min and
Kim, 1996). Thus, we analyze the combined effect
of Jacobian and integration rule used upon
numerical solutions to design locking-free ele­
ments. We present typical numerical tests to exam­
ine the performance of the new elements and to
verify the analysis used in this paper.

2. Anisoparametric Three-Node
Element

Sengupta (1997) employed a 5-node thirteen
OaF horizontally curved beam element with
different degrees of interpolating polynomials.
One set is a fourth-degree Lagrangian
polynomial, which is used for interpolating out­
of-plane-deformable curved beam geometry and
vertical displacement, and another is a third­
degree polynomial, which is used for the angles of
bending rotation and twisting rotation. A similar
procedure can be applied to 3-node element.

2.1 Geometry and displacements
The geometry of a 3-node out-of-plane defor­

mable curved beam element, which is in x-Y

plane as shown in Fig. I (a), is represented by

2.2 Strain definition of out-ef-plane-defor­
mabie curved beam

The energy of an out-of-plane-deformable
curved beam is given by

u=+1{GAkb (rn) 2+GK (Xt) 2+ er; (Xn) 2}ds

(6)

where E is the Young's modulus, G is the shear
modulus, K is the polar moment of inertia, GK is
the torsional rigidity, A is the cross-sectional
area, In is the second moment of area, k b is
b-directional shear correction factor, rn is the
shear strain, Xt is the twisting strain and Xn is a
bending strain.

Displacements and stresses of out-of-plane­
deformable curved beam are shown in Fig. I (c).
The displacements vector u on the any point of
the beam axis can be expressed as:

3 3

x= 2;.xiNwi and y= l:.yiNwi (I)
i=l i=l

where
(7)
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Fig. 1 (a) Curvilinear coordinate systems in 3-dimensional space
(b) A 3-node curved beam element in natural coordinate
(c) Positive sense of generalized displacements and stresses
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d8n +xBtds

(9)

The strains of out-of-plane-deformable curved

beam are defined as (Moon et. aI., (996) where x is a curvature at a point (x, y) on the

beam and it is given by
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3. Numerical Reduced Minimization
Theory

For a curved beam of a circular cross section
with a constant diameter d, consider the strain
energy

2.3 Stress-strain relationship
The stresses, viz., shear force ( Ts), bending

moment(Mn) and twisting moment(Mt) at any
section are expressed as follows (Moon et. al.,
1996):

( 15)

Yn=8n(~) + d~g)

=8n(~) +~,s dt~~g)

3.1 Numerical minimization under uniform
isoparametric mapping (Min and Kim,
1994)

When the displacements are approximated by

side of Eq. (14), respectively. When d -+ O.

(GAkb/Efn) -+ co and (GK/Efn) -+ 1/4(I+v)
where v is Poisson's ratio. This indicates that the
factor GAkb/Ej« in the shearing term can be very
large when a thin beam is considered. This factor
can be interpreted as a penalty factor. Thus, the
shear strain energy is a constrained energy and
bending and twisting energies are unconstrained
ones. As the beam becomes thin, the constraint of

zero shear deformation, i. e., r« = 8n +dw / ds=0
will be approached and the deformation is gover­
ned by the shear constraint. If the zero shear
constraint is not satisfied, the spurious energy
cause shear locking when the low-order elements
are used(Prathap et. aI., 1986, 1987, 1990).

In reduced minimization theory, the above fact
is shown through the minimization of the total
strain energy which is consists of constrained and
unconstrained energy, that is, for the minimiza­
tion of total strain energy to satisfy the zero shear
constraint, the minimization of the constrained
energy should not produce any spurious con­
straints. Since the reduced minimization theory
can be found in other publications (Min and Kim,
1991,1994-1997), instead of repeating a mention
on it, we present two conclusive theorems of the
numerical reduced minimization theory, which is
obtained by minimization of the constrained
energy: The constrained shear strain can be ex­
pressed as

where 8n (~) and w (~) are displacement func­
tions defined in element coordinate ~. We will use
two theorems in this paper: one is the theorem for
the uniform isoparametric mapping when ~,s is
constant, the other one is the theorem for the
non-uniform isoparametric mapping when ~.s is
not constant.

( 12)

(10)

( 13)

x

T; = GAkb(w,s+ 8n)
Mt= GK (8t,s- x8n)
Mn= Efn (8n,s+ x8t)

[

NWl'S NW2,S NW3,S]
B1= 0 0 0

000

B2=[N~l'S N~3'S]
xNSl xNS3

[

NSI NS3]
B3 = - xNSl - xNS3

NSl,S NS3,s

where

The curvature is calculated by using Eq. (1).
Using Eqs. (7) and (8), we obtain strain­

displacement matrix B (3 X 7).

FLNa~B8~[B, B, B'Jl~) (II)

U'= Gti:b1(Yn)2d5+ ~fl (Xt)2d5

+1(Xn)2d5 (14)

which is obtained by dividing Eq. (6) by Efn/2.
The relation in Eq. (14) shows the relative impor­
tance of the shearing, twisting and bending contri­
butions to the element stiffness of a CO-continu­
ous finite element. The shearing, twisting and
bending contributions are represented by the first,
the second and the third terms on the right hand
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complete polynomials of degree tn - I), the con­

strained strain is expressed as

In=Ao+AI';:+... +A n_3.;:n-3
+ An_z.;n-z+A:_I.;:n-1 (16)

where A:- I is the unmatched coefficient and A k

(k=O, 1"'n-3, n-2) are matched coefficients.

The error-moment equations that minimize the

constrained strain energy are given as

(+1
)-1 Ine-Id';:<n: H)=O, k=l, 2, 3,

"', H (17)

where H is number of integration points used.

(I) If H 2: n, then the n error-moment equa­

tions produce one spurious constraint and (n - I)

independent true constraints.

(2) If H::;'n-I, then the (n-I) error­

moment equations produce no spurious con­

straints but yield H independent true constraints

only.

3.2 Reduced minimization under non-uni­

form mapping (Min and Kim, 1996)

When the displacements are approximated by

complete polynomials of degree (n - I), and map­

ping function is assumed by complete

polynomials of degree m, the constrained strain

(In) is expressed as

In=';:,5In
= ';:,5 (Ao+AI';:+... +An_z.;n-z+A:-l

.;:n-I+A:,;:n+,··+A:,.m_I.;n+m-l) (18)

where 'Yn=Ao+Al';:+···+An-z.;n-z+A:-1.;n-1
+A:.;n +... +A:,.m_I.;n+m-l
Ak(k=O, I, "', n-2) are matched coefficients,

and AZ(k=n-l, n, "', n+m-I) are un­

matched coefficients.

The error-moment equations that minimize the

constrained strain energy by using H -point Gaus­

sian quadrature are given as

1
,. 1

Ine-Id';:<n: H)=O, k= 1,2,3, "', H
-I

(19)

(I) If H 2: n +m, then the error-moment equa­
tions in Eq. (19) produce (n - I) true constraints

and t.m+ I) spurious constrai nts.

(2) If n+ m >H 2: n. then H error-moment

equations produce (n -I) true constraints and

(H - n+ I) spurious constraints.

(3) If H::;. n-I, then H error-moment equa­

tions produce no spurious constrains but yield H
true constraints only.

From the above theorems, (n-I)-point

minimization or integration can be considered as

an optimal minimization or integration since the

(n - I) -point minimization produces maximum

number of true constraints without spurious con­

straints. Namely, when using n-node element,

(n - I) -point integration is optimal integration

regardless of isoparametric mapping or anisopar­
ametric mapping.

4. Application of Reduced
Minimization Theory

4.1 Consideration of Jacobian

The Jacobian calculated in the Cartesian coor­

dinates are expressed as

ds
l=df=

(20)

It should be noted that Jacobian calculated by

Eq. (20) cannot be constraint unless the geometry

of a beam is straight.

To clarify the relationship between integration

points and stiffness locking due to spurious con­

straint, we will employ the numerical reduced

minimization theory under non-uniform map­

ping. To use the theory, Jacobian in Eq. (20)

should be expressed in terms of polynomial.

Thus, instead of Eq. (20), we will use a fitted

Jacobian which is obtained by using least squares

fit. Using the fitted Jacobian, we will apply

(n - I) -and n-point minimization to the shear

strain energy.

4.1.1 Jacobian of circularly-curved beam

The curved beam shown in Fig. 2 (a) has an

opening angle 1(/2, a circular cross-section with

diameter d=0.05m. and radius of curvature

R=5m.
When the beam is discretized by a single 3­

noded element as shown in Fig 2(b), the fitted
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3

1

(a) (b)

Fig. 2 (a) An out-of-plane deformable curved beam with a circular geometry; the radius of
curvature R=5m and d=O.05m

(b) Discretization by a single 3-node element

4.7 ,..-----------------,

3.5 L-__~__~.::........__~_~_..........J

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

e
Fig. 3 Jacobian of the out-of-plane deformable

curved beam with a circular geometry when
single element is used (23)

dw
Yn= ds +8n

1­
=JYn

L« = 1.01926';2-0.53285';+3.04313 (22)

which is plotted in Fig. 5 together with Eq. (20).

4.2 Application of numerical reduced
minimization theory

The constrained strain of out-of-plane-defer­
mabie curved beam is expressed as

noded element as shown in Fig. 4 (b), the fitted
Jacobian is expressed as,---;::-::-;-,

-Eq. (20) I
l~Eq. (21)

3.7

4.5

3.9

4.3
c
<1l

:g 4.1
c
<1l..,

which is plotted in Fig. 3 together with Eq. (20).

4.1.2 Jacobian ofspiraly-curved beam
The curved beam shown in Fig. 4(a) has an

open angle Jr/2, and a circular cross-section with

its diameter d=0.05m. Its radius of curvature is

given by R=Ro{I-J'.t(;-8)}, (0::;'8::;,Jr/2)

where R o=5m and J'.t=0.2.
When the beam is discretized by a single 3-

(25)

Jacobian is

!fit = 1.07147';2+3.54874 (21)

where, Yn = w.•+J8n (24)
When employing 3-node anisoparametric ele­

ment, the binormal displacement wand the rota­
tion 8n are approximated as follows.

w = ao+at'; +a2.;2
8n=bo+b;.;

Using Eq. (25), the Yn is expressed as

Yn=(al+2a2';)+J(bo+b;.;) (26)

4.2.1 When Jacobian is constant
If the Jacobian is constant, i. e., J = ao. Eq. (26)

can be written as
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Fig. 4 (a) An out-of-plane-deformable curved beam with a spiral geometry; the radius of curvature

R=Ro{I-t-t(tr/2-B)} where Ro=5m, t-t=O.2 and d=O.05m
(b) Discretization by a single 3-node element

(27)

where, A O= al + tl1l bo, and A j = 2a2+ aDlh
Since the Yn is expressed only by matched

coefficients (AD, AI), no spurious constraints are
produced. Thus, if we set Jacobian constraint, the
numerical solutions will be free from spurious
constraints.

When 2-point minimization (or integration) is
employed, the error-moment equations for the
minimization of the constrained strain energy are
given, from Eq. (19), by

1\ nd';(3 : 2)=0
-I

1:Yn';d';(3 : 2) =0 (30)

These equations produce following true con­
straints,

where ± p are Gauss points of two-point integra­
tion. Thus it is expected that the numerical solu­
tions are free from spurious constraints if two­
point integration is used.

When 3-point minimization (or integration) is
employed, the error-moment equations that mini­
mize the constrained strain energy are given, from
Eq. (19), by

1:7nd';(3 : 3)=0

4.2.2 When Jacobian is approximated by
polynomials

Considering Eqs. (21) and (22), assume

] = !fit

=ao+al';+aze (28)

where ai(i=O, 1,2) are some constraints.
Using Eq. (28), Yn in Eq. (26) is expressed as

Yn=Ao+A 1';+ At .;z+ A;e (29)

where

Ao=al+aabo
A l =2a2+aa~ +al"6;;
At =al~+a2 bo
A;=a2bt

A o+At e';t) 2=0

Al +A; e';l)z=O (31)
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tively. Both of them are cantilevered curved
beams subjected to a concentrated shear force P
= ION in the positive binomial direction at the
free tip. The material properties are given as
follows:

Young's modulus: E=2.IOx IO"N/m2

Poisson's ratio: v=0.3

Shear modulus: G E 8.07X 101ON/m2

2(1 +v)

Shear correction factor: k 6i~~~)

;::;:0.886364

Fig. 6 Displacements of the circular model at e=
7[/2 are plotted in terms of the number of
elements

(33)

(32)
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These equations yield following constraints,

Ao=O
Al +At e';l) 2=0
Ai=O

t;

Fig. 5 Jacobian of an out-of-plane-deformable
curved beam with a spiral geometry when
single element is used

3.4

5. Numerical Test

4.6 <r----------------,

4.2

4.4

c
~ 3.8
o
~ 3.6
-,

where the Gauss points of three-pointed integra­
tion are 0 and ± q. The first two constraints in
Eq. (33) are true constraints and the last one is
spurious constraint. Because of the spurious con­
straint, it is expected that the convergence of
numerical solutions will be delayed and the shear
stress distribution will be undulate.

So far, we study the constraint condition
according to integration rules and Jacobian con­
dition for anisoparametric 3-node element. The
results of the analysis based on reduced minimiza­
tion theory are summarized as follow:

(I) When Jacobian is constant, no spurious
constraint is produced irrespective of integration

rules.
(2) If the Jacobian is not constant, maximum

number of integration points, which does not
produce spurious constraints, is two regardless of
mapping types.

Test models are the circular model and the
spiral model shown in Fig. 2 and Fig. 4, respec-

The exact solution of the beams are calculated
by Castigliano's theorem. Displacements of the
spiral model are calculated by using numerical
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Fig. 7 Displacements of the spiral mdoel at e= 7[/2
are plotted in terms of the number of ele­
ments

integration.

To examine the theoretical predictions on
numerical solutions, we perform numerical tests

using the following anisoparametric 3-noded
elements:

(i) S3_3v which employs 3-point integration
for the shear strain.

(ii) S3_2v which employs 2-point integration
for the shear strain.

(iii) S3_3c which employs 3-point integration

with Jacobian at ';=0 for the shear strain.
All the three elements employ 2-point integra­

tion for the calculation of twisting and bending

strains. It should be noted that the Jacobian of S3
3v and S3_2v is a function of [;. But the Jacobian

2 3 4 5 6
NurrtJer 01 elerrents

9

5.1 Convergence in terms of number of
elements

According to the reduced minimization analy­
sis in the previous section, the element S3_3v

produces a spurious constraint while S3_2v and
S3_3c yield only true constraints. Thus, the con­

vergence of displacements of S3_3v will be
delayed compared with those of S3_2v or S3_3c.
To examine this prediction, the displacements at

the free tip are plotted in terms of number of
elements in Fig. 6 and Fig. 7, which show that the
tendency of numerical solutions coincides well

with the prediction.

5.2 Undulate stress pattern
The shear stress distribution obtained by S3_3v

will be oscillatory since the element yields spuri­
ous constraints. But the shear stress distributions

obtained by S3_2v and 53_3c will be free from
undulate pattern because the element does not
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produce spurious constraints. To check this pre­
diction, we plot shear stress distributions along
the beam axes in Fig. 8 and Fig. 9 when the
beams are discretized by nine elements.

6. Conclusions

This paper presents three-noded, seven DOF,
anisoparametric elements (S3_2v and S3_3c) to
alleviate the error due to spurious shear con­
straint. The element of S3_2v uses two-point
integration for all strains. The element of S3_3c
uses three-point integration with Jacobian at 1;=°for shear strain, and two-point integration for
the other strains.

Using the numerical reduced minimization
analysis, this paper has shown that the element S3_
3v produces a spurious constraint whi", S3_2v
and S3_3c yield only true constraints. Thus, the
convergence of numerical displacements of S3_3v
is expected to be delayed compared with those of
S3 2v or S3 3c. The shear stress distributions of

- -
S3_3c will be oscillatory whereas the shear stress
distribution of S3 2v and S3 3c will be not. We

- -
have shown that the spurious constraint in the
element S3_3v arises from the incorporative
action of non-constraint Jacobian and 3-point

integration.
To confirm the theoretical prediction, numeri­

cal tests are performed for circular as well as for
non-circular curved beams. The numerical experi­
ments show a good agrement with the theoretical
predictions.
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